Optimal Spatial Models of Interregional Economic Cooperation in the Field of Innovative Economy

Authors

DOI:

https://doi.org/10.17059/ekon.reg.2022-3-2

Keywords:

пространственный масштаб, пространственная автокорреляция, инновационная активность, пространственная эконометрика, пошаговая регрессия, глобальный индекс Морана, локальный индекс Морана, региональное сотрудничество в сфере инноваций, модель Дарбина, модель пространственного запаздывания, пространственная ошибка

Abstract

Domestic cooperation of innovative companies is a promising research area in Russia, especially considering recent macroeconomic events caused by sanctions, in
particular, restrictions on the import of high-tech goods. Thus, the present study examines the optimal spatial scale of interregional innovation cooperation. The article
presents an analysis of approaches to determining the optimal number of k-matrices of relations between innovation active regions. It is hypothesised that the innovative activity of the business in one region does not influence the innovative activity of its neighbours and vice versa. Stepwise regression was applied to identify the core
explanatory variable. Based on the spatial weights matrices, a spatial econometric model was constructed using the least squares method. Further, the global Moran’s I was employed to test the spatial correlation. Local indicators of spatial association (LISA) using the queen criterion of contiguity were utilised to determine the dependencies of innovative activity between neighbouring regions. The analysis used panel data from all Russian regions for the period from 2010 to 2019, as well as spatial econometric modelling to identify the side effects of the optimal spatial scale. The study revealed the presence of spatial correlation in the levels of regional innovative activity, the size of markets, as well as institutional support for enterprises in individual regions. Additionally, the research identified factors positively affecting the scale of innovative activity of the regions and adjacent territories, such as regional domestic income, the number of participants in innovation processes and infrastructure facilities. The neighbourhood of regions characterised with many participants in innovation processes (at least 100 units), as well as innovation infrastructure facilities (at least 810 units) will be seen as the optimal scale of regional cooperation.

Author Biography

Anton I. Mosalev , Financial University under the Government of the Russian Federation, Moscow

Cand. Sci. (Econ.), Associate Professor, Department of Management and Innovations, Moscow, Russian Federation; Scopus Author ID: 56677699200; https://orcid.org/0000-0001-7213-5308 (49, Leningradskiy Ave., Moscow, 125993, Russian Federation; e-mail: aimosalev@fa.ru).

References

Anselin, L. (2003). Spatial Externalities, Spatial Multipliers, And Spatial Econometrics. International Regional Science Review, 26(2), 153–166. DOI: 10.1177/0160017602250972.

Belotti, F. & Ilardi, G. (2018). Consistent inference in fixed-effects stochastic frontier models. Journal of econometrics, 202(2), 161-177.

Bentarzi, M. & Sadoum, M. (2021). Efficient estimation in periodic INARp model: Nonparametric innovation distributions case. Journal of Statistical Planning and Inference, 211, 340-361. DOI: 10.1016/j.jspi.2020.07.005.

Bokov, A. & Antonenko, S. (2020). Application of logistic regression equation analysis using derivatives for optimal cutoff discriminative criterion estimation. Annals of Mathematics and Physics, 3(1), 32-35. DOI: 10.17352/amp.000016. Burridge, P. (2011). A research agenda on general-to-specific spatial model search. Investigaciones Regionales — Journal of Regional Research, 21, 71-90.

Caniëls, M. & Verspagen, B. (2003). Spatial Distance in a Technology Gap Model. In: B. Fingleton (Eds.), European Regional Growth. Advances in Spatial Science (pp. 159-182). Springer, Berlin, Heidelberg. DOI: https://doi. org/10.1007/978-3-662-07136-6_6.

Capozza, C., Salomone, S. & Somma, E. (2020). Micro-econometric analysis of innovative start-ups: the role of firm-specific factors and industry context in innovation propensity. Industrial and Corporate Change, 29(4), 935–957. DOI: 10.1093/icc/dtaa006.

Cartone, A. & Postiglione, P. (2020). Principal component analysis for geographical data: the role of spatial effects in the definition of composite indicators. Spatial Economic Analysis, 16(2), 126-147. DOI: 10.1080/17421772.2020.1775876.

Fleming, J. M. (1962). Domestic Financial Policies under Fixed and under Floating Exchange Rates. International Monetary Fund, 9, 369-380. DOI: 10.2307/3866091.

Flint, C. & Taylor, P. J. (2018). Political Geography World-Economy, Nation-State and Locality. 7th Edition. London: Routledge, 390.

Guillain, R. & Le Gallo, J. (2020). Introduction to the special issue: recent developments in spatial statistics and spatial econometrics. The Annals of Regional Science, 64, 239–241. DOI: 10.1007/s00168-020-00983-7.

Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complexity. 185

Kesavan, P. (2021). Findings: Social Innovation, Architectural Innovation, and Cultural Innovation. In: Enablers of Organisational Learning, Knowledge Management, and Innovation (pp. 135-203). Springer, Singapore. DOI: https://doi. org/10.1007/978-981-15-9793-0_5.

LeSage, J. P. (2010). Bayesian Estimation of Limited Dependent Variable Spatial Autoregressive Models. Geographical Analysis, 32(1), 19-35. DOI: 10.1111/J.1538-4632.2000.TB00413.X.

Maarouf, A. F. & Dunenkova, E. N. (2020). Macroregional strategies: an approach to connect the national and regional innovation strategies. Sovremennaya ekonomika: problemy i resheniya [Modern economics: problems and solutions], 7(127), 128-147. DOI: 10.17308/meps.2020.7/2402. (In Russ.)

Masakazu, O. (2018). Hyers–Ulam stability of first-order nonhomogeneous linear difference equations with a constant stepsize. Applied Mathematics and Computation, 330(C), 143-151. DOI: 10.1016/j.amc.2018.02.036.

Merzlikina, G. S. (2020). Regional innovative development: new criteria as indicators of assessment. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Ekonomika [Vestnik of Astrakhan State Technical University. Series: Economics], 3, 7–18. DOI: 10.24143/2073-5537-2020-3-7-18. (In Russ.)

Mosalyov, A. I. (2011). The development of innovation economy of Russia. Vestnik Voronezhskogo gosudarstvennogo universiteta. Ekonomika i upravlenie [Proceedings of Voronezh State University. Series: Economics and Management], 1, 26-32. (In Russ.)

Mundell, R. A. (1960). The Monetary Dynamics of International Adjustment under Fixed and Flexible Exchange Rates. The Quarterly Journal of Economics, 74(2), 227–257. DOI: 10.2307/1884252.

Popkova, E. G., Alekseev, A. N. Lobova, S. V. & Sergi, B. S. (2020). The Theory of Innovation and Innovative Development. AI Scenarios in Russia. Technology in Society, 63, 101390. DOI: 10.1016/j.techsoc.2020.101390.

Rudskaya, I. A. (2017). Evaluating the effectiveness of the regional innovation system of Russia by the stages of innovation process. Vestnik Volgogradskogo gosudarstvennogo universiteta. 10. Innovatsionnaya deyatelnost [Science Journal of Volgograd State University. Technology and innovations], 11(3), 23-34. DOI: 10.15688/jvolsu10.2017.3.4.

Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234–240. DOI: https://doi.org/10.2307/143141.

Wang, K., Xu, H., Ji, X. & Tang, Y. (2021). An Empirical Analysis of the Impact of Absorptive Capacity and Spillover Effects on China’s Regional Innovation Capability. In: J. Xu, G. Duca, S. Ahmed, F. García Márquez, A. Hajiyev (Eds.), Proceedings of the Fourteenth International Conference on Management Science and Engineering Management. ICMSEM 2020. Advances in Intelligent Systems and Computing, vol. 1191 (pp. 285-300). Springer, Cham. DOI: https://doi. org/10.1007/978-3-030-49889-4_24.

Yan, Y. & Wu, Z. (2020). Regional innovation distribution and its dynamic evolution: Policy impact and spillover effect—Based on the perspective of innovation motivation. PLoS ONE, 15. DOI: 10.1371/journal.pone.0235828.

Zemtsov, S. & Kotsemir, M. (2019). An assessment of regional innovation system efficiency in Russia: the application of the DEA approach. Scientometrics, 120, 375–404. DOI: 10.1007/s11192-019-03130-y.

Published

30.09.2022

How to Cite

Mosalev А. И. . (2022). Optimal Spatial Models of Interregional Economic Cooperation in the Field of Innovative Economy. Economy of Regions, 18(3), 638–652. https://doi.org/10.17059/ekon.reg.2022-3-2

Issue

Section

Regional Social and Economic Problems