Spatial Autoregressive Modelling of Priorities for Agricultural Development in the Ural Federal District

Authors

DOI:

https://doi.org/10.17059/ekon.reg.2025-4-12

Keywords:

spatial development priorities, spatial autocorrelation analysis, spatial autoregressive modelling (SAR), spatial interactions, municipalities, crop production, livestock farming

Abstract

Disparities in spatial development across agricultural sectors are becoming an increasingly urgent issue for regional food security. The study’s hypothesis is that agricultural development should focus on creating new growth poles, forming spatial clusters, and strengthening cooperative ties with surrounding areas. The purpose of this study is to test a methodological approach that supports the identification of promising directions for the development of the agricultural sector in the Ural Federal District (Russia). The proposed approach evaluates the spatial distribution of agricultural production in livestock and crop sectors, identifies centres of localization, emerging clusters, and their zones of influence, and examines direct and inverse spatial interactions between municipalities. These tasks are addressed through spatial autocorrelation analysis following P. Moran’s methodology and L. Anselin’s matrices of local spatial autocorrelation indices, while spatial autoregressive modelling assesses the effectiveness of proposed development priorities. As a result, the study identified priorities for the spatial development of agricultural sectors in the Ural Federal District, including new growth poles in crop production (Beloyarsky and Bogdanovich districts; Kartalinsky, Oktyabrsky, and Argayashsky municipal districts) and livestock farming (Kamyshlov District; Reftinsky, Tavdinsky, and Ketovsky districts), along with stronger cooperative links between existing and emerging growth poles, spatial clusters, and surrounding municipalities. Spatial modelling confirmed the effectiveness of these priorities for crop production and indicated that concentrating livestock production in growth poles is ineffective without the development of cooperative relationships. The findings of the study may be useful to policymakers in setting priorities for the spatial development of agricultural sectors in the Ural Federal District.

Author Biographies

Ilya V. Naumov , Institute of Economics of the Ural Branch of RAS

Сand. Sci. (Econ.), Associate Professor, Senior Research Associate, Head of the Laboratory of Modelling of the Spatial Development of the Territories; Scopus Author ID: 57204050061; http://orcid.org/0000-0002-2464-6266  (29, Moskovskaya St., Ekaterinburg, 620014, Russian Federation; e-mail: naumov.iv@uiec.ru).

Vladislav M. Sedelnikov , Institute of Economics of the Ural Branch of the RAS

Junior Researcher of the Laboratory of Modelling of the Spatial Development of the Territories; Scopus Author ID: 57223134382; https://orcid.org/0000-0003-0494-2647  (29, Moskovskaya St., Ekaterinburg, 620014, Russian Federation; e-mail: vms-1990@mail.ru).

References

Asalkhanov, P. G., Ivanio, Ya. M., & Polkovskaya, M. N. (2017). Crop yield predictive models in parametric programming problems. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 21 (2), 57–66. https://doi.org/10.21285/1814–3520-2017-2-57-66 (In Russ.)

Cerqueti, R., Maranzano, P., & Mattera, R. (2025). Spatially-Clustered Spatial Autoregressive Models with Application to Agricultural Market Concentration in Europe. Journal of Agricultural Biological and Environmental Statistics, 30 (2), 431–465. https://doi.org/10.1007/s13253-024-00672-4

Chen, X., Zhou, J., Xing, L., Wang, H., & Lu, J. (2023). Spatiotemporal evolution and driving factors of the coupling coordination between county land urbanization and grain production: the case of Jiangsu province, China. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1179551

Dong, Y., Qi, C., Gu, Y., Gui, C., & Fang, G. (2024). Citrus Industry Agglomeration and Citrus Green Total Factor Productivity in China: An Empirical Analysis Utilizing a Dynamic Spatial Durbin Model. Agriculture, 14 (11), 2059. https://doi.org/10.3390/agriculture14112059

Estanislau, P., Goebel, M. A., Staduto, J. a. R., & Kreter, A. C. (2021). Spatial distribution of agricultural farms led by women in Brazil. Revista De Economia E Sociologia Rural, 59 (3), e222800. https://doi.org/10.1590/1806–9479.2021.222800

Ghorbani, M., Kulshreshtha, S., Radmehr, R., & Dadrasmoghaddam, A. (2020). Identification of Bio-Components Influencing Wheat Yields: Application of Spatial Regression Model. HSOA Journal of Agronomy and Agricultural Science, 3 (1), 022. https://doi.org/10.24966/aas-8292/100022

Gorbatovskii, A. V., & Gorbatovskaya, O. N. (2017). Theoretical and applied aspects of the location and specialization of livestock industries. Ekonomicheskie voprosi razvitiya selskogo khozyaistva Belarusi [Economic Issues of Agricultural Development in Belarus], (45), 28–38. (In Russ.)

Han, J., Shen, L., & Li, C. (2024). Can crop production agglomeration reduce carbon emissions? — empirical evidence from China. Frontiers in Environmental Science, 12, 1516238. https://doi.org/10.3389/fenvs.2024.1516238

Ivanova, T. B., Gorshkova, O. P., & Tlisov, A. B. (2017). Specifics of spatial placement of the enterprises of agro-industrial complex in the Volgograd region. Ekonomika: vchera, segodnya, zavtra [Economics: Yesterday, Today and Tomorrow], 7 (2В), 265–282. (In Russ.)

Kholodova, M. A. (2022). Diagnostics of the crop industry spatial distribution conditions. Agrarnii vestnik Urala [Agrarian Bulletin of the Urals], (5(220)), 93–102. https://doi.org/10.32417/1997–4868-2022-220-05-93-102 (In Russ.)

Kozhevnikov, S. A., & Patrakova, S. S. (2022). Priorities and tools for ensuring intra-regional space integration along the “urban-rural” line. Voprosi upravleniya [Management Issues], (2(75)), 76–90. https://doi.org/10.22394/2304–3369-2022-2-76-90 (In Russ.)

Kuznetsova, N. A., Astashova, E. A., & Zinich, L. V. (2024). Practical recommendations for improving the territorial specialization and spatial distribution of agriculture. Ekonomika, predprinimatelstvo i pravo [Journal of Economics, Entrepreneurship and Law], 14 (11), 6625–6638. https://doi.org/10.18334/epp.14.11.122095 (In Russ.)

Larue, S., Abildtrup, J., & Schmitt, B. (2008). Modelling the Spatial Structure of Pig Production in Denmark. 54th Annual North American Meetings of the Regional Science Association International, 1–28.

Li, M., Guo, Z., & Zhang, W. (2022). A novel seasonal-spatial integrated model for improving the economic-environmental performance of crop production. MethodsX, 9, 101906. https://doi.org/10.1016/j.mex.2022.101906

Naumov, I. V., Nikulina, N. L., Barybina, A. Z., Bychkova, A. A., Krasnykh, S. S., Ponomareva, A. O., & Sedelnikov, V. M. (2024). Prioritety prostranstvennogo razvitija Ural’skogo federal’nogo okruga: kollektivnaja monografija [Priorities of the spatial development of the Ural Federal District: A collective monograph]. Ekaterinburg: Institute of Economics of the Ural Branch of the Russian Academy of Sciences, 453. (In Russ.)

Patrakova, S. S. (2022). Assessing intraregional asymmetry of agricultural production in the Vologda Oblast. Problemi razvitiya territorii [Problems of Territory’s Development], 26 (1), 27–42. https://doi.org/10.15838/ptd.2022.1.117.3 (In Russ.)

Ran, D., Zhang, Z., & Jing, Y. (2022). A Study on the Spatial — Temporal Evolution and Driving Factors of Non-Grain Production in China’s Major Grain-Producing Provinces. International Journal of Environmental Research and Public Health, 19 (24), 16630. https://doi.org/10.3390/ijerph192416630

Silaeva, L. P., Alekseev, S. A., & Didyk, A. S. (2025). Strategic directions for spatial development of animal husbandry. Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN [News of the Kabardino-Balkarian Scientific Center of RAS], 27 (4), 145–154. https://doi.org/10.35330/1991–6639-2025-27-4-145-154 (In Russ.)

Ulimwengu, J., & Sanyal, P. (2013). Is Agricultural Production Spillover the Rationale behind CAADP Framework? Spatial Panel Model Approach. Modern Economy, 4 (5), 391–402. https://doi.org/10.4236/me.2013.45041

Vinnichek, L. B., & Zaruk, N. F. (2022). Methodological approaches to assessing the effective placement of organic crop production. Moskovskii ekonomicheskii zhurnal [Moscow Economic Journal], 7 (11), 29. https://doi.org/10.55186/2413046X_2022_7_11_683 (In Russ.)

von Tunen, I. H. (1926). Izolirovannoe gosudarstvo [The Isolated State]. Moscow: Economic zhizn’ Publ., 326. (In Russ.)

Xiao, S., He, Z., Zhang, W., & Qin, X. (2022). The Agricultural Green Production following the Technological Progress: Evidence from China. International Journal of Environmental Research and Public Health (IJERPH), 19 (16), 9876. https:// doi.org/10.3390/ijerph19169876

Yakunina, Z. V. (2023). Spatial organization of potato and vegetable production in the country. Russian Journal of Management, 11 (2), 200–206. https://doi.org/10.29039/2409–6024-2023-11-2-200-206 (In Russ.)

Yang, J. (2024). Research on the Impact and Spillover Effects of Urbanization Process on Grain Production: Empirical Study based on Spatial Durbin Model. Frontiers in Sustainable Development, 4 (9), 63-73. https://doi.org/10.54691/6cq3gv27

Zaruk, N. F., Kagirova, M. V., Kharitonova, A. E., Romantseva, Yu. N., Kolomeeva, E. S., & Migunov, R. A. (2022). Efficient location of organic crop production by regions of Russia. Izvestiya Timiryazevskoi sel’skokhozyaistvennoi akademii [Izvestiya of Timiryazev Agricultural Academy], (3), 90–112. https://doi.org/10.26897/0021-342X-2022-3-90-112 (In Russ.)

Published

12.12.2025

How to Cite

Naumov И. В. ., & Sedelnikov В. М. . (2025). Spatial Autoregressive Modelling of Priorities for Agricultural Development in the Ural Federal District. Economy of Regions, 21(4), 1094–1108. https://doi.org/10.17059/ekon.reg.2025-4-12

Issue

Section

Sectoral Economics