Key Hubs of the Polar Silk Road: Sustainable Arctic Routes

Authors

DOI:

https://doi.org/10.17059/ekon.reg.2025-3-19

Keywords:

Polar Silk Road, port capacity, Hydrogen 5G Model, NSR navigation window, Northern Sea Route, environmental protection

Abstract

Murmansk and Arkhangelsk ports have significant potential and are well-positioned to accommodate the growing traffic of the Northern Sea Route (NSR). It is projected that by 2030 the cargo turnover of both ports will increase, which underscores the importance of ensuring sustainable navigation along this route. Such sustainability depends heavily on accurate ice forecasting and the optimization of operational windows. Against this backdrop, this study examines the capacities of three key Polar Silk Road hubs — Murmansk, Arkhangelsk, and Qingdao, focusing on their roles in supporting NSR development. Accurate forecasting of ice conditions in the NSR water area is a critical prerequisite for the reliable planning of shipping operations. Although all three ports contribute to Polar Silk Road connectivity, they differ substantially in cargo volumes and structures, as well as in the types of vessels they service. Using 2022 annual reports from Murmansk, Arkhangelsk, and Qingdao, we analysed a set of comparable indicators, including cargo turnover, waste utilization, and emissions of harmful substances from vessels. To complement this, we also examined Chinese models for port infrastructure development and for integrating ice forecasting with navigation window optimization along the NSR. The comparative analysis reveals that rising port productivity, when accompanied by increased environmental protection expenditures, substantially reduces waste flows but does not necessarily result in lower harmful emissions. This finding points to differentiated strategic priorities: for Arkhangelsk, enhancing waste utilization capacity; for Qingdao, increasing environmental protection investment and achieving CO₂ emissions neutrality; and for Murmansk, accelerating the implementation of AI-driven solutions.

Author Biographies

Maria A. Pitukhina , Petrozavodsk state University

Dr Sci. (Polit.), Professor; Scopus Author ID: 56728867600; https://orcid.org/0000-0001-7012-2079 (33, Lenina Ave., 185011, Petrozavodsk, Russian Federation, e-mail:  maria.pitukhina@gmail.com).

Anastasia D. Belykh , Petrozavodsk State University

analyst; Scopus Author ID: 57994424800; https://orcid.org/0000-0002-7361-6696 (33, Lenina Ave., 185910, Petrozavodsk, Russian Federation, e-mail: anastasiya.belykh098@gmail.com).

Oleg V. Tolstoguzov , Petrozavodsk State University

Dr Sci. (Econ.), Associate professor; Scopus Author ID: 57210840176; https://orcid.org/0000-0002-4162-8342 (33, Lenina Ave., 185011, Petrozavodsk, Russian Federation, e-mail: olvito@mail.ru).

References

Blunden, M. (2012). Geopolitics and the Northern Sea Route. International Affairs, 88(1), 115–129. https://doi.org/10.1111/j.1468–2346.2012.01060.x

Bogoyavlensky, V. I., & Kishankov, A. V. (2024). Dangerous gas-saturated objects on the Arctic shelf of Eastern Siberia, the Far East (Russia) and Alaska (USA). Arktika: ekologiya i ekonomika [Arctic: Ecology and Economy], 14 (4), 478–487. https://doi.org/10.25283/2223–4594-2024-4-478-487 (In Russ.)

Bogoyavlensky, V. I., Bogoyavlensky, I. V., & Nikonov, R. A. (2024). Explosive degassing of the Earth on the Yamal Peninsula and the adjacent Kara Sea. Arktika: ekologiya i ekonomika [Arctic: Ecology and Economy], 14 (2), 177–191. https://doi.org/10.25283/2223–4594-2024-2-177-191 (In Russ.)

Bogoyavlensky, V. I., Kishankov, A. V., & Kazanin, A. G. (2021). Permafrost, Gas Hydrates and Gas Seeps in the Central Part of the Laptev Sea. Doklady rossiiskoi akademii nauk. Nauki o zemle [Doklady Earth Sciences], 500 (1), 70–76. https://doi.org/10.31857/S2686739721090048 (In Russ.)

Cao, J., Wang, B., Xiang, B., Li, J., Wu, T., Fu, X., Wu, L. & Min, J. (2015). Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM). Advances in Atmospheric Sciences, 32, 585–600. https://doi.org/10.1007/s00376-014-4200-6

Chen, J., Kang, S., Wu, A. & Chen, L. (2024). Projected emissions and climate impacts of Arctic shipping along the Northern Sea Route. Environmental Pollution, 341, 122848. https://doi.org/10.1016/j.envpol.2023.122848

Cherenkova, E. A., & Semenov, V. A. (2024). Current Dynamics of Ice-free Navigation in the Russian Arctic and its Prospects in the XXI Century. Materialy 22-i Mezhdunarodnoi konferentsii «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa» [Proceedings of the 22nd International Conference «Modern Problems of Earth Remote Sensing from Space»] (p. 304). Moscow: IKI RAN. http://conf.rse.geosmis.ru/files/books/2024/10171.htm (Date of access: 28.04.2025). (In Russ.)

Qin, D. (2022). The Polar Silk Road. Beijing: China international publishing group: Foreign Languages Press, 179.

Dong, Z., Shi, L., Lin, M. & Zeng, T. (2022). A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its Application to Sea Ice Thicknesses of Cryosat-2 Data. Remote Sensing, 14 (4), 1041. https://doi.org/10.3390/rs14041041

Faury, O., Serry, A., Kerbiriou, R. & Alix, Y. (2019). Analysis of Murmansk as a gateway for the Arctic production. 27th Annual IAME Conference, (hal-02406613). Athènes, Greece. https://hal.science/hal-02406613v1 (Date of access: 20.12.2024).

Gunnarsson, B., & Moe, A. (2021). Ten Years of International Shipping on the Northern Sea Route: Trends and Challenges. Arctic Review on Law and Politics, 12, 4–30. https://doi.org/10.23865/arctic.v12.2614

Gustafson, T. (2021). Klimat: Russia in the age of climate change. Harvard University Press, 336. https://doi.org/10.2307/j.ctv1xtwqdr

Yue, H., Dou, T., Li, R., Ding, M., & Xiao, C. (2023). Jiyu duozhong jiqi xuexi jiqi duidie shi jicheng fangfa de yue chidu beijihai bing yuce yanjiu [Monthly-scale Arctic sea ice extent prediction based on multiple machine learning and stacking ensemble methods]. Bingchuan dongtu [Journal of Glaciology and Geocryology], 45 (3), 893–901. https://doi.org/10.7522/j.issn.1000–0240.2023.0078 (In Chinese)

Hermann, R. R., Lin, N., Lebel, J. & Kovalenko, A. (2022). Arctic transshipment hub planning along the Northern Sea Route: A systematic literature review and policy implications of Arctic port infrastructure. Marine Policy, 145, 105275. https://doi.org/10.1016/j.marpol.2022.105275

Khon, V. C., Mokhov, I. I., & Semenov, V. A. (2017). Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations. Environmental Research Letters, 12 (2), 024010. http://doi.org/10.1088/1748–9326/aa5841

Abramov, A. A., Dorofeev, A. N., Gupalo, V. S., Kazakov, K. S., Linge, I. I., Morozov, O. A., Neuvazhaev, G. D., Ozerskii, D. A., Rastorguev, A. V., Savel’eva, E. A., Svitel’man, V. S., Utkin ,S. S., Gupalo, T. A., Kamnev, E. N., Zablotskii, K. A., Ozerskii, A. Yu., Kochkin, B. T., Petrov, V. A., Morozov, V. N., ...Speshilov, S. L. (2024). Zakhoronenie RAO na uchastke Eniseiskii v Krasnoyarskom krae: istoriya vybora ploshchadki i sovremennoe sostoyanie issledovanii [RAW disposal at the Yeniseysky site in Krasnoyarsk territory: history of site selection and current research status]. Moscow: Publishing House «Nauka», 368. https://doi.org/10.7868/9785020411067 (In Russ.)

Liang, X., Tian, Z., Zhao, F., Li, M., Liu, N., & Li, C. (2024). Evaluation of the ArcIOPS sea ice forecasts during 2021–2023. Frontiers in Earth Science, 12. https://doi.org/10.3389/feart.2024.1477626

Lin, Y., Lü, H., Lindenschmidt, K.-E., Yu, Z., Zhu, Y., Liu, M. & Chen, T. (2024). Future Global River Ice in CMIP6 Models under Climate Change. Journal of Applied Meteorology and Climatology, 63 (10), 1191–1206. https://doi.org/10.1175/JAMC-D-23-0208.1

Mahmoud, M. R., Roushdi, M. & Aboelkhear, M. (2024). Potential benefits of climate change on navigation in the northern sea route by 2050. Scientific Reports, 14, 2771. https://doi.org/10.1038/s41598-024-53308-5

Petrov, V. A., & Volkov, A. V. (2021). Resource Potential of the Arctic Zone of Russia. Nauchnye trudy Vol’nogo ekonomicheskogo obshchestva Rossii [Scientific Works of the Free Economic Society of Russia], 228 (2), 181–195. https://doi.org/10.38197/2072–2060-2021-228-2-181-195 (In Russ.)

Petrov, V. A., & Yudintsev, S. V. (2023). Mineral Resources of the Nuclear Industry of Russia and Isolation of Radioactive Waste. Geologiya rudnykh mestorozhdenii [Geology of ore deposits], 65 (5), 450–462. https://doi.org/10.31857/S0016777023050076 (In Russ.)

Pitukhina, M. A., Gurtov, V. A. & Belykh, A. D. (2024). Multipolarity in the Arctic: New economic opportunities and geopolitical risks for Russia, India and China. Ekonomika i upravlenie [Economics and Management], 30 (8), 925–935. https://doi.org/10.35854/1998–1627-2024-8-925-935 (In Russ.)

Romanenko, V. A., & Semenov, V. A. (2024). Identification of spatial and temporal evolution of Arctic sea ice in the XXI century from CMIP6 model ensemble data. Mezhdunarodnaya konferentsiya po izmereniyam, modelirovaniyu i informatsionnym sistemam dlya izucheniya okruzhayushchei sredy «Enviromis 2024» [International Conference on Measurements, Modeling and Information Systems for Environmental Studies «Enviromis 2024»], (pp.19–24). Tomsk: IMKES SO RAN. (In Russ.)

Schøyen, H., & Bråthen, S. (2011). The Northern Sea Route versus the Suez Canal: cases from bulk shipping. Journal of Transport Geography, 19 (4), 977–983. https://doi.org/10.1016/j.jtrangeo.2011.03.003

Semenov, V. A. (2021). Modern Studies of the Arctic Climate: Progress, Change of Concepts, Problems to Solve. Izvestiya RAN. Fizika atmosfery i oceana [Izvestiya, Atmospheric and ocean physics], 57 (1), 21–33. https://doi.org/10.31857/S0002351521010119 (In Russ.)

Sibul, G., & Jin, J. (2021). Evaluating the feasibility of combined use of the Northern Sea Route and the Suez Canal Route considering ice parameters. Transportation Research Part A: Policy and Practice, 147, 350–369. https://doi.org/10.1016/j.tra.2021.03.024

Stepanov, N. S. (2019). The Arkhangelsk region as an essential part of the Russian North and the western gate of the Northern Sea Route. Federalizm [Federalism], (2), 37–51. https://doi.org/10.21686/2073–1051-2019-2-37-51 (In Russ.)

Wu, A., Che, T., Li, X., & Zhu, X. (2021). A ship navigation information service system for the Arctic Northeast Passage using 3D GIS based on big Earth data. Big Earth Data, 6 (4), 453–479. https://doi.org/10.1080/20964471.2021.1981197

Wu, A., Che, T., Li, X. & Zhu, X. (2022). Routeview: an intelligent route planning system for ships sailing through Arctic ice zones based on big Earth data. International Journal of Digital Earth, 15 (1), 1588–1613. http://doi.org/10.1080/17538947.2022.2126016

Wu, R., Zhou, X., Wang, L., Wang, Z., Zhou, Y., Zhang, J., Wang, W. (2017) PM2.5 Characteristics in Qingdao and across Coastal Cities in China. Atmosphere, 8 (12), 77-88. https://doi.org/10.3390/atmos8040077

Xu, L., & Yu, Q. (2022). Performance Analysis: Using the Northern Sea Route as an Alternative to Traditional Routes. Journal of Marine Science and Technology, 30 (6), 352–363. https://doi.org/10.51400/2709–6998.2591

Yu, X., Liu, C., Wang, X., Cao, J., Dong, J., & Liu, Y. (2022). Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China. Advances in Atmospheric Sciences, 39, 903–926. https://doi.org/10.1007/s00376-021-1153-4

Zhang, Y., Meng, Q., & Ng, S. H. (2016). Shipping efficiency comparison between Northern Sea Route and the conventional Asia-Europe shipping route via Suez Canal. Journal of Transport Geography, 57, 241–249. https://doi.org/10.1016/j.jtrangeo.2016.09.008

Downloads

Published

04.09.2025

How to Cite

Pitukhina, M. A., Belykh , A. D. ., & Tolstoguzov , O. V. . (2025). Key Hubs of the Polar Silk Road: Sustainable Arctic Routes. Economy of Regions, 21(3), 848–858. https://doi.org/10.17059/ekon.reg.2025-3-19

Issue

Section

Spatial Development of Russia and China