The Use of Social Media to Study the Features of Commuting in Russian Million-Plus Cities

Authors

DOI:

https://doi.org/10.17059/ekon.reg.2023-4-13

Keywords:

commuting, social networks, million-plus cities, spatial development, population mobility, delimitation of agglomeration boundaries, labour market, big data

Abstract

Commuting as a feature of agglomeration processes, and its examination in the context of spatial development becomes relevant. Simultaneously, considering the limited availability of official municipal statistics, new data sources for such a research are necessary. The study aims to explore the possibility of using open data from VKontakte social network to identify and analyse commuting in 14 Russian million-plus cities (agglomeration centres) and 97 settlements (satellites). It is hypothesised that the outflow of labour from a million-plus city is comparable to the influx of labour from satellite cities to replace this outflow. The methods of social media analytics, correlation and comparative analysis, cartographic techniques were applied. The Federal State Statistics Service data and anonymous VKontakte user data obtained in the spring of 2023 were analysed using the author’s computer programme. The analysis showed that the higher the share of citizens of million-plus cities working outside their city, the lower the average share of residents of satellite cities working in agglomeration centres. A negative correlation between the distance from a city of residence to an agglomeration centre and the share of the commuting population was revealed. This finding confirms the presence of a gravity criterion used to determine the boundaries of urban agglomerations according to gravity models. Additionally, a positive correlation between the labour market tension and the share of residents of satellite cities working in agglomeration centres was noted. It was concluded that social media data provides new opportunities for identifying and assessing commuting flows. The research results can be used to further study commuting features, intensity and directions in order to take them into account when creating spatial development strategies.

Author Biographies

Anna Y. Uskova, Institute of Economics of the Ural Branch of RAS

Cand. Sci. (Econ.), Senior Research Associate; https://orcid.org/0000-0003-0806-5709 (29, Moskovskaya St., Ekaterinburg, 620014, Russian Federation; e-mail: uskova.ay@uiec.ru).

Natalia M. Logacheva , Chelyabinsk Branch of the Institute of Economics of the Ural Branch of RAS

Dr. Sci. (Econ.), Associate Professor, Leading Research Associate; https://orcid.org/0000-0001-7008-0446; WOS Research ID: AAZ-4704-2020 (155/1, Svobody St., Chelyabinsk, 454091, Russian Federation; e-mail: logacheva.nm@uiec.ru).

Julia V. Salomatova , Institute of Economics of the Ural Branch of RAS

Research Assistant, Institute of Economics of the Ural Branch of RAS; https://orcid.org/0000-0003-3711-4602 (29, Moskovskaya St., Ekaterinburg, 620014, Russian Federation; e-mail: salomatova.jv@uiec.ru).

Nikita I. Salomatov , Institute of Economics of the Ural Branch of RAS

Specialist, Institute of Economics of the Ural Branch of RAS; https://orcid.org/0009-0002-7983-8297 (29, Moskovskaya St., Ekaterinburg, 620014, Russian Federation; e-mail: salomatov.ni@uiec.ru).

References

Antonov, E. V. (2020). Urban Agglomerations: Approaches to the Allocation and Delimitation. Kontury globalnykh transformatsiy: politika, ekonomika, pravo [Outlines of global transformations: politics, economics, law], 13(1), 180-202. https://doi.org/10.23932/2542-0240-2020-13-1-10. (In Russ.)

Bedrina, E. B., Kozlova, O. A. & Ishukov, A. A. (2018). Methodology Aspects in Estimating Commuting of the Population. Ars Administrandi, 10 (4), 631-648. https://doi.org/10.17072/2218-9173-2018-4-631-648. (In Russ.)

Bing, L. (2011). The Study of Labor Mobility and its Impact on Regional Economic Growth. Procedia Environmental Sciences, 10 (A), 922-928, https://doi.org/10.1016/j.proenv.2011.09.148

Danilova, I. V., Savelyeva, I. P. & Rezepin, A. V. (2022). Impact of Inter-territorial Cohesion on the Development of Regional Economic Spaces. Ekonomika regiona [Economy of regions], 18 (1), 31-48. https://doi.org/10.17059/ekon.reg.2022-1-3 (In Russ.)

Fan, W., & Gordon, M. D. (2014). The Power of Social Media Analytics. Communications of the ACM, 57 (6), 74-81. https://doi.org/10.1145/2602574

Filobok, A. A., & Antonov, O. V. (2023). Practical approaches to delineation of Krasnodar urban agglomeration. Moskovskiy ekonomicheskiy zhurnal [Moscow economic journal], 8 (3), 50-66. (In Russ.)

Gogoleva, T. N., Shchepina, I. N. & Yakovenko, N. V. (2020). Pendulum migration: modern features and methods of measurement. In: Materialy zasedaniya. Mezhdunarodnyy demograficheskiy forum, Voronezh, 22–24 oktyabrya 2020 goda [Meeting materials. International Demographic Forum, Voronezh, October 22–24, 2020] (pp. 166-171). Voronezh: Digital printing. Retrieved from: https://elibrary.ru/item.asp?id=45775899 (date of access: 29.06.2023). (In Russ.)

Grebenyuk, A. A., & Subbotin, A. A. (2021). Research of migration processes in electronic social networks. Tsifrovaya sotsiologiya [Digital Sociology], 4 (2), 23-31. https://doi.org/10.26425/2658-347X-2021-4-2-23-31 (In Russ.)

Gregson, N., (2023). Work, labour and mobility: opening up a dialogue between mobilities and political economy through mobile work. Mobilities. https://doi.org/10.1080/17450101.2022.2158041

Guirao, B., Campa, J. L., & Casado-Sanz, N. (2018). Labour mobility between cities and metropolitan integration: The role of high speed rail commuting in Spain. Cities, 78, 140-154. https://doi.org/10.1016/j.cities.2018.02.008

Hargittai, E. (2015). Is Bigger Always Better? Potential Biases of Big Data Derived from Social Network Sites. The ANNALS of the American Academy of Political and Social Science, 659 (1), 63–76. https://doi.org/10.1177/0002716215570866

Kirsch, B., Giesselbach, S., Knodt, D., & Rüping, S. (2018). Robust End-User-Driven Social Media Monitoring for Law Enforcement and Emergency Monitoring. In: Leventakis, G., Haberfeld, M. (Eds.), Community-Oriented Policing and Technological Innovations (pp. 29-36). SpringerBriefs in Criminology. Cham: Springer. https://doi.org/10.1007/978-3-319-89294-8_4

Kiseleva, N. N., Mitrofanova, I. V., & Koloskova, A. A. (2021). Urban agglomeration as a factor of sustainable development of satellite towns (on the example of the Rostov region). Regionalnaya ekonomika. Yug Rossii [Regional Economy. The South of Russia], 9 (3), 113-122. https://doi.org/10.15688/re.volsu.2021.3.10 (In Russ.)

Konstantinovich, D. (2016). Printsipy formirovaniya Ekaterinburgskoy aglomeratsii: otchet o nauchno-issledovatelskoy rabote. Kn. 1. Analiticheskiy otchet. Ch. 1 [Principles of formation of the Yekaterinburg agglomeration: report on research work. Book 1. Analytical report. Part 1]. Moscow. (In Russ.)

Leskova, I. V. (2012). Urbanization processes: from city to agglomeration. Uchenye zapiski Rossiyskogo gosudarstvennogo sotsialnogo universiteta [Scientific Notes of the Russian State Social University], 11 (111), 9-13. (In Russ.)

Li, Y., & Chen, Zh. (2023). Does transportation infrastructure accelerate factor outflow from shrinking cities? An evidence from China. Transport Policy, 134, 180-190. https://doi.org/10.1016/j.tranpol.2023.02.021

Makarova, M. N. (2017). Small towns in the spatial structure of regional population distribution. Ekonomicheskie i sotsialnye peremeny: fakty, tendentsii, prognoz [Economic and Social Changes: Facts, Trends, Forecast], 10 (2), 181-194. https://doi.org/10.15838/esc.2017.2.50.10 (In Russ.)

Makhrova, A. G., Babkin, R. A., Kirillov, P. L., Starikova, A. V., & Sheludkov, A. V. (2022). Studying and Estimating Temporary Mobility and Population Pulsations in Space of Modern Russia. Izvestiya Rossiyskoy Akademii Nauk. Seriya Geograficheskaya, 86 (3), 332-352. https://doi.org/10.31857/S2587556622030104 (In Russ.)

Makhrova, A. G., Kirillov, P. L., & Bochkarev, A. N. (2019). Methodical approaches to the study of labor commuting. In: V. L. Baburin, M. S. Savoskul (Eds.). Teoreticheskie i metodicheskie podkhody v ekonomicheskoy i sotsialnoy geografii. Sb. statey [Theoretical and methodological approaches in economic and social geography. Collection of scientific articles] (pp. 96-114). Moscow, Russia: Faculty of Geography, MSU. Retrieved from: http://www.ecoross.ru/files/books2019/Sbornik_2019.pdf (Date of access: 29.06.2023). (In Russ.)

Nemchinov, D. M. (2016). The Assessment of the Required level of Road and Street Network Development in Localities and Conurbations (City Agglomeration). Transportation Research Procedia, 14, 1699-1705. https://doi.org/10.1016/j.trpro.2016.05.135

Ni, M. L. (2022). Online Communities of Labor Migrants to Russia and South Korea as Interaction Ritual Chains. Monitoring obshchestvennogo mneniya: ekonomicheskie i sotsialnye peremeny [Monitoring of Public Opinion: Economic and Social Changes Journal], 3 (169), 92-114. https://doi.org/10.14515/monitoring.2022.3.1961 (In Russ.)

Orlova, I. B., & Fomin, E. V. (2020). Digital sociology: capabilities, risks and prospects. Natsionalnaya bezopasnost [National security], 3, 48-63. https://doi.org/10.7256/2454-0668.2020.3.33274 (In Russ.)

Raysikh, A. E. (2020). Defining the Boundaries of Urban Agglomerations in Russia: Model Creation and Results. Demograficheskoe obozrenie [Demographic Review], 7 (2), 54-96. https://doi.org/10.17323/demreview.v7i2.11139 (In Russ.)

Reggiani, A., Bucci, P., Russo, G., Haas, A., & Nijkamp, P. (2011). Regional labour markets and job accessibility in City Network systems in Germany. Journal of Transport Geography, 19 (4), 528-536. https://doi.org/10.1016/j.jtrangeo.2010.05.008

Singh, P., Dwivedi, Y. K., Kahlon, K. S. et al. (2020). Smart Monitoring and Controlling of government policies using social media and Cloud Computing. Information Systems Frontiers, 22, 315–337. https://doi.org/10.1007/s10796-019-09916-y

Stieglitz, S., Dang-Xuan, L., Bruns, A., & Neuberger, C. (2014). Social Media Analytics. Wirtschaftsinf, 56, 101-109. https://doi.org/10.1007/s11576-014-0407-5

Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, Ch. (2018). Social media analytics — Challenges in topic discovery, data collection, and data preparation. International Journal of Information Management, 39, 156-168. https://doi.org/10.1016/j.ijinfomgt.2017.12.002

Tolmachev, D. E., Kuznetsov, P. D., & Ermak, S. V. (2021). Methodology for Identifying the Boundaries of Agglomerations based on Statistical Data. Ekonomika regiona [Economy of Region], 17 (1), 44-58. https://doi.org/10.17059/ekon.reg.2021-1-4 (In Russ.)

Turulja, L., Suša Vugec, D., & Pejić Bach, M. (2023). Big Data and Labour Markets: A Review of Research Topics. Procedia Computer Science, 217, 526-535. https://doi.org/10.1016/j.procs.2022.12.248

Uskova, A., Salomatova, J., & Salomatov, N. (2023). Assessment of the possibility of using social network data in urban research. E3S Web of Conferences, 435, 02003. http://dx.doi.org/10.1051/e3sconf/202343502003

Published

19.12.2023

How to Cite

Uskova А. Ю., Logacheva Н. М. ., Salomatova Ю. В. ., & Salomatov Н. И. . (2023). The Use of Social Media to Study the Features of Commuting in Russian Million-Plus Cities. Economy of Regions, 19(4), 1121–1134. https://doi.org/10.17059/ekon.reg.2023-4-13

Issue

Section

Social Development of Regions