Total Factor Productivity in Agriculture in Russian Regions
DOI:
https://doi.org/10.17059/ekon.reg.2023-4-18Keywords:
total factor productivity, Growth Accounting Equation, gross output, factors of production, material costs, energy capacities, number of employees, KLEMSAbstract
The agricultural sector of Russia faces the need to improve production technologies. The need to reduce costs per unit of production deserves special consideration. In this connection the work offers to consider development of agricultural sector by means of the indicator which to a greater degree displays level of competitiveness – total factor productivity (TFP).
The aim of the study is to find out the nature of differentiation of Russian regions by TFP level on the basis of the author's methodology of its assessment.
On the basis of the analysis of TFP dynamics, the study shows that some regions have achieved indicators exceeding the national average, as well as highlights leading and lagging regions. Among the Russian regions the leading places by cumulative TFP growth in 2011–2020 belong to the Pskov, Penza, Oryol, Ryazan regions, Kamchatka Krai, and others. The average Russian value is characteristic of the Sverdlovsk and Astrakhan regions. The Tyumen and Sakhalin regions, the Primorsky and Stavropol Krais, the Republic of Karelia, the Chelyabinsk region, the Jewish Autonomous region, the Chukotka Autonomous Okrug, and the Republic of Ingushetia are in the group of less successful regions.
Russia's achievement of long-term growth in agriculture is facilitated by such factors as effective allocation of investments, technological progress, and increasing TFP rates. The driver of innovative development can be the growth of farmers' demand for advanced technologies needed to gain market share and survive. However, with weak implementation of major innovations, TFP growth will be difficult to maintain at a high level, and its growth rate will gradually decline, as the quality of innovation and innovation activities decline.
References
Abukari, A.-B. T., Öztornaci, B., & Veziroğlu, P. (2016). Total factor productivity growth of Turkish agricultural sector from 2000 to 2014: Data envelopment malmquist analysis productivity index and growth accounting approach. Journal of development and agricultural economics, 8 (2), 27–38. http://dx.doi.org/10.5897/JDAE2015.0700
Bagchi, M., Rahman, S., & Shunbo, Y. (2019). Growth in Agricultural Productivity and Its Components in Bangladeshi Regions (1987–2009): An Application of Bootstrapped Data Envelopment Analysis (DEA). Economies, 7 (2), 37. https://doi.org/10.3390/economies7020037
Chekanskiy, A. N., & Frolova, N. L. (2003). Teoriya sprosa, predlozheniya i rynochnykh strukrur [Theory of supply, demand and market structures]. Moscow: MSU Faculty of Economics, TEIS.
de Vries, G. J., Erumban, A. A., Timmer, M. P., Voskoboynikov, I. B., & Wu, H. X. (2012). Deconstructing the BRICs: Structural transformation and aggregate productivity growth. Journal of Comparative Economics, 40 (2), 211–227. https://doi.org/10.1016/j.jce.2012.02.004
Firsova, A., & Chernyshova, G. (2020). Efficiency Analysis of Regional Innovation Development Based on DEA Malmquist Index. Information, 11 (6), 294. https://doi.org/10.3390/info11060294
Fuglie, K. (2015). Accounting for growth in global agriculture. Bio-based and Applied Economics, 4 (3), 201–234. https://doi.org/10.13128/bae-17151
Fuglie, K. O. (2012). Productivity growth and technology capital in the global agricultural economy. In: Productivity Growth in Agriculture: An International Perspective (pp. 335–368). Oxfordshire, UK: CAB International. https://doi.org/10.1079/9781845939212.0335
Germanova, O. E., & Rudaya, Yu. N. (2009). Types and Indices Dynamics of Technical Progress. Terra Economicus, 7 (4), 31-43. (In Russ.)
Germanova, O. G., & Rudaya, Yu. N. (2017). Dynamics of parameters and type of technical progress in agriculture of Krasnodar krai. Regionalnaya ekonomika. Yug Rossii [Regional Economy. The South of Russia], 3 (17), 158–172. https://doi.org/10.15688/re.volsu.2017.3.15 (In Russ.)
Lissitsa, A., & Babiéceva, T. (2003). Teoreticheskie osnovy analiza produktivnosti i effektivnosti selskokhozyaistvennykh predpriyatiy [Theoretical frameworks for a productivity and efficiency analysis of agricultural enterprises]. Discussion Paper, No. 49. Institute of Agricultural Development in Central and Eastern Europe (IAMO), Halle (Saale), 34. Retrieved from: http://nbn-resolving.de/urn:nbn:de:gbv:3:2-23259 (Date of access: 02.08.2022) (In Russ.)
Maslennikov, O. V. (2015). Classification of methods of calculation of cumulative factorial productivity. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie [Proceedings of Voronezh State University. Series: Economics and Management], 4, 172–175. (In Russ.)
Mitsek, S. A. (2021). Macroeconomic Dynamics of the Total Factor Productivity of the Russian Economy. Ekonomika regiona [Economy of region], 17 (3), 799–813. https://doi.org/10.17059/ekon.reg.2021-3-6 (In Russ.)
Neganova, V. P., & Dudnik, A. V. (2018). Improving the State Support of Agriculture in a Region. Ekonomika regiona [Economy of region], 14 (2), 651–662. https://doi.org/10.17059/2018-2-25 (In Russ.)
Orekhova, S. V., & Kislitsyn, E. V. (2019). Total factor productivity in the Russian industry: Small vs large enterprises. Journal of New Economy, 20 (2), 127–144. https://doi.org/10.29141/2073-1019-2019-20-2-8 (In Russ.)
Petukhova, M. S., & Mamonov, O. V. (2020). Structural changes in crop production factors during the transition to a new technological structure. Mezhdunarodnyy selskokhozyaystvennyy zhurnal [International Agricultural Journal], 63 (6), 104–108. https://doi.org/10.24411/2587-6740-2020-16127 (In Russ.)
Ponomarev, Yu. Yu., & Magomedov, R. N. (2019). The introduction of new technologies and total factor productivity: microeconometric analysis. Ekonomicheskie otnosheniya [Journal of International Economic Affairs], 9 (3), 2249-2268. https://doi.org/10.18334/eo.9.3.41063 (In Russ.)
Potapov, A. P. (2021). The Use of Input-Output Tables in the Study of the Dynamics and Structure of the Resource Intensity of Agricultural Production. Problemy prognozirovaniya [Studies on Russian Economic Development], 32 (2), 176–182. https://doi.org/10.1134/S1075700721020088 (In Russ.)
Rada, N. (2016). India’s post-green-revolution agricultural performance: What is driving growth? Agricultural Economics, 47 (3), 341–350. https://doi.org/10.1111/agec.12234
Rada, N., & Buccola, S. (2012). Agricultural policy and productivity: Evidence from Brazilian Censuses. Agricultural Economics, 43 (4), 355–367. https://doi.org/10.1111/j.1574-0862.2012.00588.x
Rada, N., & Schimmelpfennig, D. (2018). Evaluating research and education performance in Indian agricultural development. Agricultural Economics, 49 (3), 395–406. https://doi.org/10.1111/agec.12424
Rada, N., Buccola, S., & Fuglie, K. (2011). Government policy and agricultural productivity in Indonesia. American Journal of Agricultural Economics, 93 (3), 867–884. https://doi.org/10.1093/ajae/aar004
Rada, N., Liefert, W., & Liefert, O. (2017). Productivity Growth and the Revival of Russian Agriculture. ERR-228, U.S. Department of Agriculture, Economic Research Service. Retrieved from: https://www.ers.usda.gov/webdocs/publications/83285/err-228.pdf?v=0 (Date of access: 05.08.2022)
Rada, N., Liefert, W., & Liefert, O. (2020). Evaluating Agricultural Productivity and Policy in Russia. Journal of Agricultural Economics, 71 (1), 96–117. https://doi.org/10.1111/1477-9552.12338
Sayganov, A. S., & Lenski, A. V. (2015). Analysis of the efficiency of plant products production at agricultural enterprises. Vestsі Natsyyanalnay akademіі navuk Belarusі. Seryya agrarnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Agrarian Series], 1, 22–36. (In Russ.)
Sharapova, V. M., Sharapova, N. V., & Sharapov, Yu. V. (2020). Social factors restraining the development of rural territories. Mezhdunarodnyy selskokhozyaystvennyy zhurnal [International Agricultural Journal], 63 (6), 49–52. https://doi.org/10.24411/2587-6740-2020-16113 (In Russ.)
Siebert, S., & Döll, P. (2010). Quantifying blue and green water uses and virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology, 384 (3-4), 198–217. https://doi.org/10.1016/j.jhydrol.2009.07.031
Sologub, N. N., Ulanova, O. I., Ostroborodova, N. I., & Ostroborodova, D. A. (2021). Problems and prospects of digital technology in agriculture. Mezhdunarodnyy selskokhozyaystvennyy zhurnal [International Agricultural Journal], 64 (4), 28–30. https://doi.org/10.24412/2587-6740-2021-4-28-30 (In Russ.)
Steensland, A. (2021). 2021 Global Agricultural Productivity Report: Strengthening the Climate for sustainable agricultural growth. Virginia Tech College of Agriculture and Life Sciences. Retrieved from: https://globalagriculturalproductivity.org/wp-content/uploads/2021/10/2021-GAP-Report.pdf (Date of access: 06.08.2022)
Svetlov, N. M. (2019). Non-parametric production frontier models: experience of agricultural applications. Vestnik TsEMI RAN [Vestnik CEMI], 2 (1). https://doi.org/10.33276/s265838870004477-7 (In Russ.)
Tikhonov, E. I., Kolov, K. N., & Reimer, V. V. (2018). Development of rural territories in the system reproduction of human capital agrarian sector of economics. Mezhdunarodnyy selskokhozyaystvennyy zhurnal [International Agricultural Journal], 3 (363), 8–14. https://doi.org/10.24411/2587-6740-2018-13035 (In Russ.)
Truflyak, E. V. (2020). Reyting regionov po ispolzovaniyu elementov tochnogo selskogo khozyaystva [Rating of regions on the use of elements of precision agriculture]. Krasnodar, Russia: KubSAU, 37. (In Russ.)
Truflyak, E. V., Kurchenko, N. Yu., & Kreimer, A. S. (2018). Tochnoe zemledelie: sostoyanie i perspektivy [Precision farming: State and prospects]. Krasnodar, Russia: KubSAU, 27. (In Russ.)
Uzun, V. Ya., Gataulina, E. A., & Muratova, L. G. (2011). Effektivnost ispolzovaniya regionalnykh agrarnykh byudzhetov [Efficiency of use of regional agrarian budgets]. Moscow, Russia: ARIAPI named after A. A. Nikonov: ERV, 161. (In Russ.)
Varlamov, A. A., Galchenko, S. A., Gvozdeva, O. V., & Chuksin, I. V. (2020). Agricultural digitalization process on the basis of a conceptually new smart land use system. Mezhdunarodnyy selskokhozyaystvennyy zhurnal [International Agricultural Journal], 63 (5), 69–72. https://doi.org/10.24411/2587-6740-2020-15097 (In Russ.)
Voskoboynikov, I. B. (2012). New Measures of Output, Labour and Capital in Industries of the Russian Economy. GGDC Research Memorandum GD-123. Groningen: Groningen Growth and Development Centre, University of Groningen. https://pure.rug.nl/ws/portalfiles/portal/15518011/gd123.pdf (Date of access: 01.08.2022)
World Bank. (2016). Rossiyskaya Federatsiya, kompleksnoe diagnosticheskoe issledovanie ekonomiki. Puti dostizheniya vseobemlyushchego rosta [Systematic Country Diagnostic for the Russian Federation: Pathways to Inclusive Growth]. Retrieved from: https://documents1.worldbank.org/curated/en/563031497436564657/pdf/110765-SCD-P153080-PUBLIC-RUSSIAN-DecSCDpaperengforweb.pdf (Date of access: 30.07.2022). (In Russ.)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Сеитов Санат Каиргалиевич

This work is licensed under a Creative Commons Attribution 4.0 International License.

